卷四十九 志二十四
康熙甲子元法下
月食用数
朔策二十九
五三0五九三。
望策十四
七六五二九六五。
太阳平行,朔策一十万四千七百八十四秒,小馀三0四三二四。
太阳引数,朔策一十万四千七百七十九秒,小馀三五八八六五。
太
引数,朔策九万二千九百四十秒,小馀二四八五九。
太
周,朔策十一万0四百十四秒,小馀0一六五七四。
太阳平行,望策十四度三十三分十二秒0九微。
太阳引数,望策十四度三十三分0九秒四十一微。
太
引数,望策六宫十二度五十四分三十秒0七微。
太
周,望策六宫十五度二十分0七秒。
太阳一小时平行一百四十七秒,小馀八四七一0四九。
太阳一小时引数一百四十七秒,小馀八四0一二七。
太
一小时引数一千九百五十九秒,小馀七四七六五四二。
太
一小时
周一千九百八十四秒,小馀四0二五四九。
月距
一小时平行一千八百二十八秒,小馀六一二一一0八。
太阳光分半径六百三十七。
太
实半径二十七。
地半径一百。
太阳最高距地一千0十七万九千二百0八,与地半径之比例,为十一万六千二百。
太
最高距地一千0十七万二千五百,与地半径之比例,为五千八百一十六。
朔应二十六
三八五二六六六。
首朔太阳平行应初宫二十六度二十分四十二秒五十七微。
首朔太阳引数应初宫十九度一十分二十七秒二十一微。
首朔太
引数应九宫十八度三十四分二十六秒十六微。
首朔太
周应六宫初度三十分五十五秒十四微,馀见
躔、月离。
推月食法
求天正冬至,同
躔。
求纪
,以天正冬至
数加一
,得纪
。
求首朔,先求得积
同月离。置积
减朔应,得通朔。上考则加。以朔策除之,得数加一为积朔。馀数转减朔策为首朔。上考则除得之数即积朔,不用加一。馀数即首朔,不用转减。
求太
入食限,置积朔,以太
周朔策乘之,满周天秒数去之,馀为积朔太
周。加首朔太
周应,得首朔太
周。上考则置首朔
周应减积朔
周。又加太
周望策,再以
周朔策递加十三次,得逐月望太
平
周。视某月
周入可食之限,即为有食之月。
周自五宫十五度0六分至六宫十四度五十四分,自十一宫十五度0六分至初宫十四度五十四分,皆可食之限。再于实
周详之。
求平望,以太
入食限月数与朔策相乘,加望策,再加首朔
分及纪
,满纪法去之,馀为平望
分。自初
起甲子,得平望干支,以刻下分通其小馀,如法收之。初时起子正,得时刻分秒。
求太阳平行,置积朔,加太
入食限之月数为通月,以太阳平行朔策乘之。满周天秒数去之,加首朔太阳平行应,上考则减。又加太阳平行望策,即得。
求太阳平引,置通月,以太阳引数朔策乘之,去周天秒数,加首朔太阳引数应,上考则减。又加太阳引数望策,即得。
求太
平引,置通月,以太
引数朔策乘之,去周天秒数,加首朔太
引数应,上考则减。又加太
引数望策,即得。
求太阳实引,以太阳平引,依
躔法求得太阳均数,以太
平引,依月离法求得太
初均数,两均数相加减为距弧。两均同号相减,异号相加。以月距
一小时平行为一率,一小时化秒为二率,距弧化秒为三率,求得四率为距时秒,随定其加减号。两均同号,
大仍之,
小反之;两均一加一减,其加减从
。又以一小时化秒为一率,太阳一小时引数为二率,距时秒为三率,求得四率为秒。以度分收之,为太阳引弧。依距时加减号。以加减太阳平引,得实引。
求太
实引,以一小时化秒为一率,太
一小时引数为二率,距时秒为三率,求得四率为秒。以度分收之,为太
引弧。依距时加减号。以加减太
平引,得实引。
求实望,以太阳实引复求均数为
实均,幷求得太阳距地心线。即实均第二平三角形对正角之边。以太
实引复求均数为月实均,求得太
距地心线。法同太阳。两均相加减为实距弧。加减与距弧同。依前求距时法,求得时分为实距时,以加减平望,加减与距时同。得实望。加满二十四时,则实望进一
,不足减者,借一
作二十四时减之,则实望退一
。
求实
周,以一小时化秒为一率,太
一小时
周为二率,实距时化秒为三率,求得四率为秒,以度分收之,为
周距弧。以加减太
周,依实距时加减号。又以月实均加减之,为实
周。若实
周入必食之限,为有食。自五宫十七度四十三分0五秒至六宫十二度十六分五十五秒,自十一宫十七度四十三分0五秒至初宫十二度十六分五十五秒,为必食之限。不入此限者,不必布算。
求太阳黄赤道实经度,以一小时化秒为一率,太阳一小时平行为二率,实距时化秒为三率,求得四率为秒,以度分收之,为太阳距弧。依时距时加减号。以加减太阳平行,又以
实均加减之,即黄道经度。又用弧三角形求得赤道经度。详月离求太
出入时刻条。
求实望用时,以
实均变时为均数时差,以升度差黄赤道经度之较。变时为升度时差,两时差相加减为时差总,加减之法,详月离求用时平行条。以加减实望,为实望用时。距
出后
入前九刻以内者,可以见食。九刻以外者全在昼,不必算。
求食甚时刻,以本天半径为一率,黄白大距之馀弦为二率,实
周之正切为三率,求得四率为正切,检表得食甚
周。与实
周相减,为
周升度差。又以太
一小时引数与太
实引相加,依月离求初均法算之,为后均。以后均与月实均相加减,两均同号相减,异号相加。得数又与一小时月距
平行相加减,两均同加,后均大则加,小则减。两均同减,后均大则减,小则加。两均一加一减,其加减从后均。为月距
实行。乃以月距
实行化秒为一率,一小时化秒为二率,
周升度差化秒为三率,求得四率为秒。以时分收之,得食甚距时。以加减实望用时,实
周初宫六宫为减,五宫十一宫为加。为食甚时刻。
求食甚距纬,以本天半径为一率,黄白大距之正弦为二率,实
周之正弦为三率,求得四率为正弦,检表得食甚距纬。实
周初宫五宫为北,六宫十一宫为南。
求太
半径,以太
最高距地为一率,地半径比例数为二率,太
距地心线内减去次均轮半径为三率,求得四率为太
距地。又以太
距地为一率,太
实半径为二率,本天半径为三率,求得四率为正弦。检表得太
半径。
求地影半径,以太阳最高距地为一率,地半径比例数为二率,太阳距地心线为三率,求得四率为太阳距地。又以太阳光分半径内减地半径为一率,太阳距地为二率,地半径为三率,求得四率为地影之长。又以地影长为一率,地半径为二率,本天半径为三率,求得四率为正弦,检表得地影角。又以本天半径为一率,地影角之正切为二率,地影长内减太
距地为三率,求得四率为太
所入地影之阔。乃以太
距地为一率,地影之阔为二率,本天半径为三率,求得四率为正切,检表得地影半径。
求食分,以太
全径为一率,十分为二率,幷径太
地影两半径相幷。内减食甚距纬之较幷径不及减距纬即不食。为三率,求得四率即食分。
求初亏、复圆时刻,以食甚距纬之馀弦为一率,幷径之馀弦为二率,半径千万为三率,求得四率为馀弦,检表得初亏、复圆距弧。又以月距
实行化秒为一率,一小时化秒为二率,初亏、复圆距弧化秒为三率,求得四率为秒。以时分收之,为初亏、复圆距时。以加减食甚时刻,得初亏、复圆时刻。减得初亏,加得复圆。
求食既、生光时刻,以食甚距纬之馀弦为一率,两半径较之馀弦为二率,半径千万为三率,求得四率为馀弦,检表得食既、生光距弧。又以月距
实行化秒为一率,一小时化秒为二率,食既、生光距弧化秒为三率,求得四率为秒。以时分收之,为食既、生光距时。以加减食甚时刻,得食既、生光时刻。减得食既,加得生光。
求食限总时,以初亏、复圆距时倍之,即得。
求太
黄道经纬度,置太阳黄道经度,加减六宫,过六宫则减去六宫,不及六宫,则加六宫。再加减食甚距弧,又加减黄白升度差,求升度差法,详月离求黄道实行条。得太
黄道经度。求纬度,详月离。
求太
赤道经纬度,详月离求太
出入时刻条。
求宿度,同
躔。
求黄道地平
角,以食甚时刻变赤道度,每时之四分变一度。又于太阳赤道经度内减三宫,不及减者,加十二宫减之。馀为太阳距
分赤道度。两数相加,满全周去之。为
分距子正赤道度。与半周相减,得
分距午正东西赤道度。过半周者,减去半周,为午正西。不及半周者,去减半周,为午正东。
分距午正东西度过象限者,与半周相减,馀为秋分距午正东西赤道度。秋分距午东西,与
分相反。以
秋分距午正东西度与九十度相减,馀为
秋分距地平赤道度。乃用为弧三角形之一边,以黄赤大距及赤道地平
角即赤道地平上高度,
分午西、秋分午东者用此。若
分午东、秋分午西者,则以此度与半周相减用其馀。为边傍之两角,求得对边之角,为黄道地平
角。
分午东、秋分午西者,得数即为黄道地平
角。
分午西、秋分午东者,则以得数与半周相减,馀为黄道地平
角。
求黄道高弧
角,以黄道地平
角之正弦为一率,赤道地平
角之正弦为二率,
秋分距地平赤道度之正弦为三率,求得四率为正弦,检表得
秋分距地平黄道度。又视
秋分在地平上者,以太
黄道经度与三宫、九宫相减,
分与三宫相减,秋分与九宫相减。馀为太
距
秋分黄道度。
秋分宫度大于太
宫度,为距
秋分前;反此则在后。又以
秋分距地平黄道度与太
距
秋分黄道度相加减,为太
距地平黄道度,
秋分在午正西者,太
在分后则加,在分前则减;
秋分在午正东者反是。随视其距限之东西。
秋分在午正西者,太
距地平黄道度不及九十度为限西,过九十度为限东;
秋分在午正东者反是。乃以太
距地平黄道度之馀弦为一率,本天半径为二率,黄道地平
角之馀切为三率,求得四率为正切,检表得黄道高弧
角。
求初亏、复圆定
角,置食甚
周,以初亏、复圆距弧加减之,得初亏、复圆
周。减得初亏,加得复圆。乃以本天半径为一率,黄白大距之正弦为二率,初亏
周之正弦为三率,求得四率为正弦,检表得初亏距纬。又以复圆
周之正弦为三率,一率二率同前。求得四率为正弦,检表得复圆距纬。
周初宫、五宫为纬北,六宫、十一宫为纬南。又以幷径之正弦为一率,初亏、复圆距纬之正弦各为二率,半径千万为三率,各求得四率为正弦,检表得初亏、复圆两纬差角。以两纬差角各与黄道高弧
角相加减,得初亏、复圆定
角。初亏限东,纬南则加,纬北则减;限西,纬南则减,纬北则加。复圆反是。若初亏、复圆无纬差角,即以黄道高弧
角为定
角。
求初亏、复圆方位,食在限东者,定
角在四十五度以内,初亏下偏左,复圆上偏右。四十五度以外,初亏左偏下,复圆右偏上。適足九十度,初亏正左,复圆正右。过九十度,初亏左偏上,复圆右偏下。食在限西者,定
角四十五度以内,初亏上偏左,复圆下偏右。四十五度以外,初亏左偏上,复圆右偏下。適足九十度,初亏正左,复圆正右。过九十度,初亏左偏下,复圆右偏上。京师黄平象限恆在天顶南,定方位如此。在天顶北反是。
求带食分秒,以本
出或
入时分初亏或食甚在
入前者,为带食出地,用
入分。食甚或复圆在
出后者,为带食入地,用
出分。与食甚时分相减,馀为带食距时。以一小时化秒为一率,一小时月距
实行化秒为二率,带食距时化秒为三率,求得四率为秒。以度分收之,为带食距弧。又以半径千万为一率,带食距弧之馀切为二率,食甚距纬之馀弦为三率,求得四率为馀切,检表得带食两心相距之弧。乃以太
全径为一率,十分为二率,幷径内减带食两心相距之馀为三率,求得四率,即带食分秒。
求各省月食时刻,以各省距京师东西偏度变时,每偏一度,变时之四分。加减京师月食时刻,即得。东加,西减。
求各省月食方位,以各省赤道高度及月食时刻,依京师推方位法求之,即得。
绘月食图,先作横二线,直角相
,横当黄道,线当黄道经圈,用地影半径度于中心作圈以象闇虚。次以幷径为度作外虚圈,为初亏、复圆之限。又以两径较为度作内虚圈,为食既、生光之限。复于外虚圈上周线或左或右,取五度为识,视实
周初宫、十一宫作识于右,五宫、六宫作识于左。乃自所识作线过圈心至外虚圈下周,即为白道经圈。于此线上自圈心取食甚距纬作识,即食甚月心所在。从此作十字横线,即为白道。割内外虚圈之点,为食甚前后四限月心所在。末以月半径为度,于五限月心各作小圈,五限之象具备。
食用数
太阳实半径五百零七,馀见月食推
食法。
求天正冬至,同
躔。
求纪
,同月食。
求首朔,同月食。
求太
入食限,与月食求逐月望平
周之法同,惟不用望策,即为逐月朔平
周。视某月
周入可食之限,即为有食之月。
周自五宫九度零八分至六宫八度五十一分,又自十一宫二十一度零九分至初宫二十度五十二分,皆为可食之限。
求平朔,
求太阳平行,
求太阳平引,
求太
平引,以上四条,皆与月食求平望之法同,惟不加望策。
求太阳实引,同月食。
求太
实引,同月食。
求实朔,与月食求实望之法同。
求实
周,与月食同。视实
周入食限为有食。自五宫十一度四十五分至六宫六度十四分,又自十一宫二十三度四十六分至初宫十八度十五分,为实朔可食限。
求太阳黄赤道实经度,同月食。
求实朔用时,同月食求实望用时。实朔用时,在
出前或
入后。五刻以外,则在夜,不必算。
求食甚用时,与月食求食甚时刻法同。
求用时
秋分距午赤道度,以太阳赤道经度减三宫,不足减者,加十二宫减之。为太阳距
分后赤道度。又以食甚用时变为赤道度,加减半周,过半周者减去半周,不及半周者加半周。为太阳距午正赤道度。两数相加,满全周去之。其数不过象限者,为
分距午西赤道度。过一象限者,与半周相减,馀为秋分距午东赤道度。过二象限者,则减去二象限,馀为秋分距午西赤道度。过三象限者,与全周相减,馀为
分距午东赤道度。
求用时
秋分距午黄道度,以黄赤大距之馀弦为一率,本天半径为二率,
秋分距午赤道度之正切为三率,求得四率为正切,检表得用时
秋分距午黄道度。
求用时正午黄赤距纬,以本天半径为一率,黄赤大距之正弦为二率,距午黄道度之正弦为三率,求得四率为正弦,检表得用时正午黄赤距纬。
求用时黄道与子午圈
角,以距午黄道度之正弦为一率,距午赤道度之正弦为二率,本天半径为三率,求得四率为正弦,检表得用时黄道与子午圈
角。
求用时正午黄道宫度,置用时
秋分距午黄道度,
分加减三宫。午西加三宫,午东与三宫相减。秋分加减九宫,午西加九宫,午东与九宫相减。得用时正午黄道宫度。
求用时正午黄道高,置赤道高度,北极高度减象限之馀。以正午黄赤距纬加减之,黄道三宫至八宫加,九宫至二宫减。即得。
求用时黄平象限距午,以黄道子午圈
角之馀弦为一率,本天半径为二率,正午黄道高之正切为三率,求得四率为正切,检表得度分。与九十度相减,馀为黄平象限距午之度分。
求用时黄平象限宫度,以黄平象限距午度分与正午黄道宫度相加减,正午黄道宫度初宫至五宫为加,六宫至十一宫为减,若正午黄道高过九十度,则反其加减。即得。
求用时月距限,以太阳黄道经度与用时黄平象限宫度相减,馀为月距限度,随视其距限之东西。太阳黄道经度大于黄平象限宫度者为限东,小者为限西。
求用时限距地高,以本天半径为一率,黄道子午圈
角之正弦为二率,正午黄道高之馀弦为三率,求得四率为馀弦,检表得限距地高。
求用时太
高弧,以本天半径为一率,限距地高之正弦为二率,月距限之馀弦为三率,求得四率为正弦,检表得太
高弧。
求用时黄道高弧
角,以月距限之正弦为一率,限距地高之馀切为二率,本天半径为三率,求得四率为正切,检表得黄道高弧
角。
求用时白道高弧
角,置黄道高弧
角,以黄白大距加减之,食甚
周初宫、十一宫,月距限东则加,限西则减。五宫、六宫反是。即得。如过九十度,限东变为限西,限西变为限东,不足减者反减之。则黄平象限在天顶南者,白平象限在天顶北;黄平象限在天顶北者,白平象限在天顶南。
求太阳距地,详月食求地影半径条。
求太
距地,详月食求太
半径条。
求用时高下差,用平三角形,以地半径为一边,太阳距地为一边,用时太
高弧与象限相减,馀为所夹之角,求得对太阳距地边之角。减去一象限,为太阳视高。与太
高弧相减,馀为太阳地半径差。又用平三角形,以地半径为一边,太
距地为一边,用时太
高弧与象限相减,馀为所夹之角,求得对太
距地边之角。减去一象限,为太
视高。与高弧相减,馀为太
地半径差。两地半径差相减,得高下差。
求用时东西差,以半径千万为一率,白道高弧
角之馀弦为二率,高下差之正切为三率,求得四率为正切,检表得用时东西差。
求食甚近时,以月距
实行化秒为一率,一小时化秒为二率,东西差化秒为三率,求得四率为秒。以时分收之,为近时距分。以加减食甚用时,月距限西则加,限东则减,仍视白道高弧
角变限不变限为定。得食甚近时。
求近时
秋分距午赤道度,以食甚近时变赤道度求之,馀与前用时之法同。后诸条仿此,但皆用近时度分立算。
求近时
秋分距午黄道度。
求近时正午黄赤距纬。
求近时黄道与子午圈
角。
求近时正午黄道宫度。
求近时正午黄道高。
求近时黄平象限距午。
求近时黄平象限宫度。
求近时月距限,置太阳黄道经度,加减用时东西差,依近时距分加减号。为近时太
黄道经度。与近时黄平象限宫度相减,为近时月距限。馀同用时。
求近时限距地高。
求近时太
高弧。
求近时黄道高弧
角。
求近时白道高弧
角。
求近时高下差。
求近时东西差。
求食甚视行,倍用时东西差减近时东西差,即得。
求食甚真时,以视行化秒为一率,近时距分化秒为二率,用时东西差化秒为三率,求得四率为秒。以时分收之,为真时距分,以加减食甚用时,得食甚真时。加减与近时距分同。
求真时
秋分距午赤道度,以食甚真时变赤道度求之,馀与用时之法同。后诸条仿此,但皆用真时度分立算。
求真时
秋分距午黄道度。
求真时正午黄赤距纬。
求真时黄道与子午圈
角。
求真时正午黄道宫度。
求真时正午黄道高。
求真时黄平象限距午。
求真时黄平象限宫度。
求真时月距限,置太阳黄道经度,加减近时东西差,依真时距分加减号。为真时太
黄道经度。馀同用时。
求真时限距地高。
求真时太
高弧。
求真时黄道高弧
角。
求真时白道高弧
角。
求真时高下差。
求真时东西差。
求真时南北差,以半径千万为一率,真时白道高弧
角之正弦为二率,真时高下差之正弦为三率,求得四率为正弦,检表得真时南北差。
求食甚视纬,依月食求食甚距纬法推之,得实纬。以真时南北差加减之,为食甚视纬。白平象限在天顶南者,纬南则加,而视纬仍为南;纬北则减,而视纬仍为北。若纬北而南北差大于实纬,则反减而视纬变为南。限在天顶北者反是。
求太阳半径,以太阳距地为一率,太阳实半径为二率,本天半径为三率,求得四率为正弦,检表得太阳半径。
求太
半径,详月食。
求食分,以太阳全径为一率,十分为二率,幷径太阳太
两半径幷。减去视纬为三率,求得四率即食分。
求初亏、复圆用时,以食甚视纬之馀弦为一率,幷径之馀弦为二率,半径千万为三率,求得四率为馀弦,检表得初亏、复圆距弧。又以月距
实行化秒为一率,一小时化秒为二率,初亏、复圆距弧化秒为三率,求得四率为秒。以时分收之,为初亏、复圆距时。以加减食甚真时,得初亏、复圆用时。减得初亏,加得复圆。
求初亏
秋分距午赤道度,以初亏用时变赤道度求之,馀与用时同。后诸条仿此,但皆用初亏度分立算。
求初亏
秋分距午黄道度。
求初亏正午黄赤距纬。
求初亏黄道与子午圈
角。
求初亏正午黄道宫度。
求初亏正午黄道高。
求初亏黄平象限距午。
求初亏黄平象限宫度。
求初亏月距限,置太阳黄道经度,减初亏、复圆距弧,又加减真时东西差,依真时距分加减号。得初亏太
黄道经度。馀同用时。
求初亏限距地高。
求初亏太
高弧。
求初亏黄道高弧
角。
求初亏白道高弧
角。
求初亏高下差。
求初亏东西差。
求初亏南北差。
求初亏视行,以初亏、东西差与真时东西差相减幷初亏食甚同限则减,初亏限东食甚限西则幷。为差分,以加减初亏、复圆距弧为视行。相减为差分者,食在限东,初亏东西差大则减,小则加。食在限西反是。相幷为差分者恆减。
求初亏真时,以初亏、视行化秒为一率,初亏、复圆距时化秒为二率,初亏、复圆距弧化秒为三率,求得四率为秒。以时分收之,为初亏距分。以减食甚真时,得初亏真时。
求复圆
秋分距午赤道度,以复圆用时变赤道度求之。馀同用时。后诸条仿此,但皆用复圆度分立算。
求复圆
秋分距午黄道度。
求复圆正午黄赤距纬。
求复圆黄道与子午圈
角。
求复圆正午黄道宫度。
求复圆正午黄道高。
求复圆黄平象限距午。
求复圆黄平象限宫度。
求复圆月距限,置太阳黄道经度,加初亏、复圆距弧,又加减真时东西差,依真时距分加减号。得复圆太
黄道经度。馀同用时。
求复圆限距地高。
求复圆太
高弧。
求复圆黄道高弧
角。
求复圆白道高弧
角。
求复圆高下差。
求复圆东西差。
求复圆南北差。
求复圆视行,以复圆东西差与真时东西差相减幷为差分,复圆食甚同限,则减;食甚限东,复圆限西,则幷。以加减初亏、复圆距弧为视行。相减为差分者,食在限东,复圆东西差大则加,小则减。食在限西反是,相幷为差分者恆减。
求复圆真时,以复圆视行化秒为一率,初亏、复圆距时化秒为二率,初亏、复圆距弧化秒为三率,求得四率为秒。以时分收之,为复圆距分。以加食甚真时,得复圆真时。
求食限总时,以初亏距分与复圆距分相幷,即得。
求太阳黄道宿度,同
躔。
求太阳赤道宿度,依恆星求赤道经纬法求得本年赤道宿钤,馀同
躔求黄道法。
求初亏、复圆定
角,求得初亏、复圆各视纬,与食甚法同。以求各纬差角。各与黄道高弧
角相加减,为初亏及复圆之定
角。法与月食同。
求初亏、复圆方位,食在限东者,定
角在四十五度以内,初亏上偏右,复圆下偏左。四十五度以外,初亏右偏上,复圆左偏下。適足九十度,初亏正右,复圆正左。过九十度,初亏右偏下,复圆左偏上。食在限西者,定
角在四十五度以内,初亏下偏右,复圆上偏左。四十五度以外,初亏右偏下,复圆左偏上。適足九十度,初亏正右,复圆正左。过九十度,初亏右偏上,复圆左偏下。京师黄平象限恆在天顶南,定方位如此,在天顶北反是。
求带食分秒,以本
出或
入时分初亏或食甚在
出前者,为带食出地,用
出分;食甚或复圆在
入后者,为带时入地,用
入分。与食甚真时相减,馀为带食距时。乃以初亏、复圆距时化秒为一率,初亏、复圆视行化秒为二率,带食在食甚前,用初亏视行;带食在食甚后,用复圆视行。带食距时化秒为三率,求得四率为秒。以度分收之,为带食距弧。又以半径千万为一率,带食距弧之馀切为二率,食甚距纬之馀弦为三率,求得四率为馀切,检表得带食两心相距。乃以太阳全径为一率,十分为二率,幷径内减带食两心相距为三率,求得四率,为带食分秒。
求各省
食时刻及食分,以京师食甚用时,按各省东西偏度加减之,得各省食甚用时。乃按各省北极高度,如京师法求之,即得。
求各省
食方位,以各省黄道高弧
角及初亏、复圆视纬,求其定
角,即得。
绘
食图法同月食,但只用
月两半径为度,作一大虚圈,为初亏、复圆月心所到。不用内虚圈,无食既、生光二限。
凌犯用数,具七政恆星行及
食。
推凌犯法,求凌犯入限,太
凌犯恆星,以太
本
次
经度,查本年忄互星经纬度表,某星纬度不过十度,经度在此限内,为凌犯入限。复查太
在入限各星之上下,如星月两纬同在黄道北者,纬多为在上,纬少为在下。同在黄道南者反是。一南一北者,北为在上,南为在下。太
在上者,两纬相距二度以内取用;太
在下者,一度以内取用。相距十七分以内为凌,十八分以外为犯,纬同为掩。太
凌犯五星,以本
太
经度在星前、次
在星后为入限,馀与凌犯恆星同。五星凌犯恆星,以两纬相距一度内取用。相距三分以内为凌,四分以外为犯,馀与太
同。五星自相凌犯,以行速者为凌犯之星,行迟者为受凌犯之星。如迟速相同而有顺逆,则为顺行之星凌犯逆行之星,皆以此星经度本
在彼星前、次
在彼星后为入限。馀同凌犯恆星。
求
行度,太
凌犯恆星,即以太
一
实行度为
行度。凌犯五星,以太
一
实行度与本星一
实行度相加减,星顺行则减,逆行则加。为
行度。五星凌犯恆星,以本星一
实行度为
行度。五星自相凌犯,以两星一
实行度相加减,顺逆同行则减,异行则加。为
行度。
求凌犯时刻,以
行度化秒为一率,刻下分为二率,本日子正相距度化秒为三率,求得四率为分。以时刻收之,初时起子正,即得。
求太
凌犯视差,五星视差甚微,可以不计。以刻下分为一率,太阳一
实行度化秒为二率,凌犯时刻化分为三率,求得四率为秒。以度分收之,与本日子正太阳实行相加,为本时太阳黄道度。依
食法求东西差及南北差。
求太
视纬,置太
实纬,以南北差加减之,加减之法,与
食同。即得。求太
距星,以太
视纬与星纬相加减,南北相同则减,一南一北则加。得太
距星。取相距一度以内者用。
求凌犯视时,以太
一小时实行化秒为一率,一小时化秒为二率,东西差化秒为三率,求得四率为秒。收为分,以加减凌犯时刻,太
距限西则加,东则减。得凌犯视时。
M.LanMxS.cOM